Written By: Qingyang Xu (website)
Date Created: July 17, 2023
Last Modified: January 22, 2024
- Chapter summary of “All of Statistics” by Larry Wasserman (2004)
- Skip first 4 chapters as they are preliminary materials covered in probability textbooks
Chapter 5. Convergence of Random Variables
Types of Convergence
- Convergence in probability (i.p.) if $\forall \epsilon >0, \mathbb{P}(|X_n-X|>\epsilon) \rightarrow0$
- Convergence in distribution (d) if $F_n(t) \rightarrow F(t)$ for all $t$ where $F$ is continuous
- Convergence in quadratic mean (q.m. or L2) if $\mathbb{E}(X_n-X)^2 \rightarrow0$
Convergence under continous transformations
Theorem: Let $g$ be a continuous function
- If $X_n \xrightarrow d X, Y_n \xrightarrow d c$ then $X_n+ Y_n \xrightarrow d X+c$ and $X_n Y_n \xrightarrow d Xc$
- If $X_n \xrightarrow p X$ then $g(X_n) \xrightarrow p g(X)$ and similarly for d
- If $X_n \xrightarrow p X, Y_n \xrightarrow p Y$ then $X_n+ Y_n \xrightarrow p X+Y$ and similarly for q.m.
- If $X_n \xrightarrow p X, Y_n \xrightarrow p Y$ then $X_n Y_n \xrightarrow p XY$
Delta Method