Written By: Qingyang Xu (website)

Date Created: November 16, 2022

Last Modified: January 15, 2024

Chapter summary of “Elements of Statistical Learning” (Second Edition)

Chapter 3. Linear Models of Regression

Geometry of OLS

$$ \hat{Y}=SY=X(X^\top X)^{-1}X^TY=UU^\top Y= \sum_{i=1}^p u_i u_i^\top Y $$

Ridge

$$ RSS(\lambda)=(Y-X\beta)^\top(Y-X\beta) + \lambda ||\beta||^2 $$

$$ \hat{\beta}{ridge} = ((X^\top X)+\lambda I_p)^{-1}X^\top Y \implies \hat{Y}{ridge} = X((X^\top X)+\lambda I_p)^{-1}X^\top Y $$